Deuterium retention in various pre-damaged tungsten materials as a function of the exposure temperature

B. Tyburska-Püschel^{a,*}, V. Kh. Alimov^b, K. Ertl^a, J. Dorner^a

^aMax-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany ^bHydrogen Isotope Research Center, University of Toyama, Japan

Motivation

- During Iter operation, 14 MeV fusion neutrons will not only introduce new traps for tritium in tungsten but also will transmute W into a compound containing about 3% Re after one year.
- To account for these effects, deuterium retention in different batches of damaged tungsten materials exposed to D plasma has been investigated as a function of the exposure temperature.
- Based on these results, the dependence of the D concentration in the radiation-induced defects on the exposure temperature was obtained for W materials and 97W-3Re compound.

Experiment

- All samples were self-irradiated above the saturation dpa (displacements per atom) level for D retention, i.e. 0.25 dpa (for E_{th} = 90 eV), using 20 MeV W ions
- The pre-damaged samples were exposed to high-flux, low-energy D plasma at various temperatures ranging from 350 to 750 K.
- The deuterium depth profiles were measured by means of NRA using the D(³He,α)p reaction. The trap density was determined in the damaged zone.
- The total D retention was measured by TDS.

Assumptions : all traps are populated, one trap corresponds to one D atom.

Materials				
Plansee Iter-grade → P-IG	Japanese Iter-grade $W \rightarrow J-IG$	MF-Standard → MF-W	Goodfellow → GW	Goodfellow 3% Re → GW-Re
 grains perpendicular to the surface grain size 1-10 μm mechanically polished and outgassed at 1200 K for 2 h 	 grains quasi-perpendicular to the surface grain size 1-5 μm mechanically polished and outgassed at 1470 K for 30 min 	 grains parallel to the surface grains size 1×(2-5) μm mechanically polished and outgassed at 1200 K for 2 h 	 grains parallel to the surface structure and grain size similar to MF-W mechanically polished and outgassed at 1200 K for 2 h 	 grains parallel to the surface grains are much thinner than in MF-W and GW foils 50 μm → no polishing, no thermal treatment
BAS			1000	0.00

Results

Trap density, ptr. dependence on the exposure temperature MF-W, 0.89 dpa, Φ = 1×10²⁶ D/m², T 1.2 ^T= 0.0176 [at.fr] . Taken from Fig.1, assumption ρ_is 80 mass 4 α = 1.3 K/s ten from TDS: MF-W, 0.89 dpa, 1×10²⁶ D/m², 340 K 10 Ē atoms/m²s) 60 Remained deuterium 0.8 85 0 10 ρ. [at.%] 0.85 e (10¹⁷ 40 0.6 D release rate P-IG, 3×10²⁶ D/m², 0.26 dpa 0.4 J-IG, 3×10²⁶ D/m², 0.89 dpa 10 20 02 ▲ GW 1×10²⁶ D/m² 0.3-0.9 dpa Fig.2 GW-Re, 3×10²⁶ D/m², 0.89 dpa Fig.1 f(T 10 400 600 800 0.0 1000 400 600 800 300 500 700 Temperature [K] *O.V. Ogorodnikova, JNM 2011 300 400 500 600 700 Temperature [K] Temperature [K]][ρ_{tr} dependence on the exposure time (dpa) Neutron equivalent fluence [n/cm²] 0.0 2.3x10 $\rho_{tr}(t, T_{exp}) = \rho_{tr}^{saturation, RT} \cdot f(T_{exp}) - 1.4 \cdot f(T_{exp})$ 2.0 -12.5 × Dpa in ITER at 0.63 FP N_W 1.5 $ho_{tr}^{saturation, \mathrm{RT}} -
ho_{tr}$ measured at saturation dpa at RT % [10⁷displ .1.0 no. of displacements N_d ion∙m ď Φ_n^{flux} – neutron flux = 340 K 0.5 = 1.59–1.46 N_W – tungsten density [1] J.C. He et al., JNM 377 (2008) 348-351 = 460 K [2] B. Tyburska et al., JNM 395 (2009) 150-155 $E_{.} = 90 \, \text{eV}$ = 1.28-1.12exp(-12.5×dpa) $f(T_{exp}) = 2.01 - 0.0028 \times T_{exp}$ [3] A.V. Golubeva et al. JNM 363-365 (2007) 893-897 0.0 0.3 0.6 0.9

Summary

- The results indicate that in all materials investigated , D concentration in the radiation-induced defects decreases with increasing exposure temperature.
- In all samples but these with Re, the D concentration is comparable, but for 97W-3Re targets it drops somewhat faster with temperature, a behavior which was not observed in undamaged W containing Re [3].
- The reason for that can be found in TEM observations of neutron-irradiated pure and Re-containing tungsten [1]. These studies show that in the presence of even small amounts of rhenium, the number of defects created during damaging is lower in comparison with pure tungsten.
- Based on these and our previous studies [2], we derived a function for the trap density dependence on the plasma exposure time and wall temperature which can be used for a tritium inventory prediction for Iter.

dpa