

FOM Institute for Plasma Physics Rijnhuizen

3

Deuterium retention in tungsten exposed to high flux plasmas

M.H.J. 't Hoen¹, B. Tyburska-Püschel², K. Ertl², H.Schut³, A.W. Kleijn⁴, J. Rapp¹, P. A. Zeijlmans van Emmichoven¹

¹ FOM Institute for Plasma Physics Rijnhuizen, NL-3439 MN Nieuwegein, The Netherlands ² Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany ³Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands ⁴ University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, The Netherlands

Introduction

Fusion reaction:

$D+T \rightarrow He + n(14.1MeV)$

Tritium retention in the walls should be kept as low as possible

- to prevent fuel-loss
- for safety reasons (max T = 700 g)

Continuous bombardment with MeV neutrons • degrades material properties • introduces damage into the material

Irradiation damage W⁴⁺

W⁴⁺ ions (12.3 MeV) were used as proxy for neutron damage.

W⁴⁺ ions were implanted at fluences up to $6.5 \cdot 10^{20}$ ions m⁻² at the 3 MV tandem accelerator at IPP-Garching.

When $E_{th} = 40 \text{ eV}$ is taken in TRIM simulations, these fluences correspond to peak damage levels of 0.1/0.2/0.5/1.0 displacements per atom (dpa).

Plasma exposure

ITER divertor

Poly-crystalline W targets purity 99.97%, Plansee Ø 20 mm x 1 mm

Anneal pre-existing defects (1 h, 1273 K)

Results - Nuclear Reaction Analysis

The depth profile of the deuterium retention is measured by using the nuclear reaction: $^{3}\text{He} + D \rightarrow ^{4}\text{He} + p$

• Deuterium retention is significantly enhanced by W⁴⁺

saturation at ~4•10¹⁷ W ion/m² (2

High D retention center: diffusion limited process.

pre-irradiation and increases with damage.

2

for the experiments.

- Depth of increased D retention up to 1.5 µm.
- Center: higher temperature \rightarrow D diffuses deeper into material.

• At the surface \rightarrow D retention independent of position (independent of flux/ temperature).

Low deuterium retention in the center: thermal detrapping.

5

The D retention is in the same order of magnitude as experiments performed at much lower fluxes by Tyburska et al [2]. \rightarrow High flux (>10²⁴ m⁻²s⁻¹) does not significantly affect the damage level where saturation takes place.

• D retention is significantly enhanced by W⁴⁺ pre-irradiation and increases with damage level.

• High flux (>10²⁴ m⁻²s⁻¹) plasma exposure does not significantly affect the damage level where saturation takes place.

• In the low temperature exposure regime deuterium retention is dominated by the diffusion process, for high temperature exposure it is dominated by thermal detrapping.

• Saturation of the deuterium retention occurs at ~0.3 dpa (E_{th} = 40 eV) for $T_{surf,max}$ = 490 K and at ~0.5 dpa (E_{th} = 40eV) for $T_{surf,max}$ = 920 K.

•The average effective damage of one W⁴⁺ ion is 3•10⁴ nm³.

Conclusions

[1] G. Wright et al, Nuclear fusion 50 (2010) 075006 [2] B. Tyburska-Püschel et al., Journal of Nuclear Materials 395 (2009) 150-155

