(Neo)classical transport

Classical transport in fluid picture (cylinder):

MHD-eq; Vp = x B
Ohm's law: F4+idx B= ,/7
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Collisions (resistivity) lead to radial velocity!

Consider diffusive particle flux (T=const):
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Coulomb collisions:momentum exchange

collision

parameter b example:

e-collision with ion (charge Z)

7% e
cross section for scattering by 90°: Oy = 7r.b920 = 5 >
(4rme,) -4-(Wy,,)

— Coulomb cross section depends strongly on particle energy : ~ 1/W,;,?



Coulomb collisions:momentum exchange

scattering by 90° via many small-
angle collisions
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Coulomb collisions:momentum exchange
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Classical transport coefficients (in particle picture)

Estimate transport coefficients: At from collision frequency v
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Classical transport coefficients in plasma

At from collision frequency v
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* typical perpendicu
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ar transport length is the Larmor radius:

* no particle transport between particles of same species:
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(only exchange of particle position for same charge, transport for e-i collisions)




Classical transport coefficients in plasma

At from collision frequency v
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* typical perpendicular transport length is the Larmor radius:
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« for e—i collisions: transport is ambipolar:
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Classical transport coefficients in plasma

Classical heat conductivity:also collisions between particles of the same
Species contribute to heat transport:
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Kii = T Vi \ = K/n

* classical heat conduction: Xi =407,
42
*Typical number for ions: 107" m~ /s

» experimentally found: 1m?*/s, and Xe = Xi



Neoclassical transport: (torus)

e change due to toroidal effects & = r/ R

*Along magnetic field lines B is not constant: mirror

Depending on v, / v, particles can be trapped




Neoclassical transport (transport in a torus)

Magnetic moment is invariant: my,

If total energy is constant, parallel energy has to decrease if B increases
up to v;=0 (reflection)
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Mirror condition: ;
VJ_(Bmin) B
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Mirror condition for magnetic surface r:
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Neoclassical Transport (transport in torus)

» depending on v|| /v, particles are trapped

m 1 ,

« drift in inhomogeneous magnetic field v, = ?(vz +—v] jé xVB
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» orbit of trapped particles - banana orbit







Fraction of trapped particles

A v_parallel _ _
Integration over velocity space (at constant
velocity)
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Fraction of trapped particles
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Estimate banana width:

i.e. deviation from magnetic surface (assume v, small):
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Banana width~ vpAt (At :time to sample a banana orbit)

Time to complete a banana orbit: v, x L (length of a field line)
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Banana width~ vpAt (At :time to sample a banana orbit)

Time to complete a banana orbit: v, x L (length of a field line)
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Neoclassical Transport (Transport in a torus)

g

Je
» number of trapped particles: n, = /2¢

« Banana width: r; =

- effective collision frequency (trapped <> passing): v . =v_/(2¢)

*D.., by random walk with 1/vesr and rg for n, particles:

n
— 2 t /
Dneo _ereff n 287'3 eff — 3/2 Dclass

* May increase D, y up to two orders of magnitude:
x; 'only' wrong by factor 3-5
D, v, still wrong by up to two orders of magnitude!



Fusion power plant needs to be much larger than
originally thought (turbulent transport)

Experimental result:
- Anomalous transport:
v, D ~ a few m?/s

Transport increases with
Heating power

» Tokamaks: Ignition expected for R =8 m



Turbulent transport (next lecture)




Diffusion from ,random walk" consideration:
(characteristic stepsize wg, collision time: 1/v )
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This result is only valid if particles can complete the banana orbits between the
collisions often enough; normalise collision time to banana-orbit time:

. \/ vgR
/) = 1U.rzel = =
=11 ‘2@(‘:“
27,3/2
V*<83/2: Dban= Dkla..ssq /6 /
V*>1: DPS —([ I V_C] DAlzss
VT g
3/2 *<1- ‘th! [,
& <v <1: DP!at —

R



Neoclassical diffusion coefficients dependence on
collisionality

Pfirsch-Schluter
Regime

_ Plateau
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Classical transport



Neoclassical Transport in Stellarators

AB pe.lssing N
toroid. trapped
ke

helically trapped
_ >
coordinate along B

In 3d geometry drift orbits are usually not on a closed surface, in general
radial outward motion



Collision-free trapped particles are usually lost in stellarators




Max-Planck-Institut fiir Plasmaphysik, EURATOM Association

WENDELSTEIN 7-X

Diffusion coefficient versus collision frequency
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W7-X : Optimized neoklassical transport




Optimization was successful! wnceucenstnr ()

Consider record discharge (with partially suppressed turbulent transport, only transiently after
injection of pellets)
» Peaked density profiles

» Electron and ion temperaturs equal (although electron heating only) (Pgcry = 4.5 MW)
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Neoclassical energy flux MaxpLCKSTITVT ()

Energy flux normalized to heating power as function of plasma minor

(2/3 of the losses are not neoclassical!).
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total neoclassical energy flux

neoclassical energy flux in the ions

neoclassical energy flux in the electrons
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Comparison to other stellarators

Experiments in W7-X standard configuration

« For comparison: calculated neoclassical energy fluxes
for same assumed density and temperatur profiles for

different W7-X configurations or stellarators (LHD)

* In non-optimized configurations/stellarators neoclassical
energy ,losses” larger than total heating power, i.e.
measured high temperatures would not be possible at

given heating power

Proof of neoclassical optimization!
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Neoclassical effects on plasma current
Correction of conductivity due to trapped particles

Density of freely moving particles in toroidal direction reduced: 7.(1 — (n:/n.))

Increased collisionality due to N o
momentum transfer between trapped V= Vei+Veer = Veil L +0¢fn.)
and passing particles:

Conductivity reduced compared to Spitzer:
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Banana current

assumption: T=const

Parallel current due to density gradient of trapped
particles:

Jgep & €(ny — ny )V 20 ~ (ng — ng)evy,
( v = V2ev) & \2evy, )

With: (121 —n2)/wg = dn/dr  current due to trapped particles:
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Banana current
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Parallel current due to density gradient of trapped particles (for T=const):
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Bootstrap current

Banana current corresponds to shift of the distribution

Iv,| function of the trapped particles
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Collisions between trapped and passing particles
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More general: Ths ™~ \[L;V,,

Detailed calculations show that contribution of Vn larger than that of VT.



Bootstrap current significantly contributes to plasma current
(prolonging discharges or even steady state operation)

Current Density Pressure

Jss ~ VP

Bootstrap Current “

Externally driven
Current e =
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