<u>Turbulence</u>

A streaming fluid (e.g. water, hydrodynamic equations) can have non-linear turbulent solutions (Reynolds, 1883)

Osborne Reynolds (1883)

S. Günter with contributions from F. Jenko, U. Stroth, C. Angioni

<u>Turbulence –</u> an important problem in fluid dynamics

- Design of airplanes, ships, cars ...
- Predict weather and climate
- Blood circulation
- •

Turbulence in plasmas

Simple linear equation $\frac{\partial u}{\partial t} = -u_{ph} \frac{\partial u}{\partial x} + \frac{1}{\mathcal{R}} \frac{\partial^2 u}{\partial x^2}$ propagation dissipation $\int_{0.5}^{0.5} \frac{0.5}{0.0} = 0.5$ Spatial Coordinate x

Add a nonlinearity

Nonlinearity creates higher harmonics \Rightarrow direct cascade wave breaking

Wikipedia

3D and add some drive ⇒ Navier-Stokes Equation

Turbulence in neutral fluids

Navier-Stokes Equation (dimensionless form) $\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \hat{p} + \frac{1}{\mathcal{R}_e} \nabla^2 \mathbf{u}$

Dimensionless Reynolds' number decides about the type of flow

Turbulence in soap films

from maartenrutgers.org/science/turbulence/gallery.html

Energy transfer between turbulent scales

K41 Theory, Andrei Kolmogorov 1941: In 3D turbulence the energy follows a direct cascade

Magnetized plasmas behave like a 2d-fluid

K41 theory for 3D turbulence

Eddy stretching as source of vorticity

- ... is not allowed in 2D turbulence
- \Rightarrow vorticity is conserved

Dual cascade in 2d turbulence

The dual cascade by R. Kraichnan 1967

Energy transferred to large scales \Rightarrow "infrared catastrophe"

Fluctuations in a fusion plasma

- Fluctuations in all quantities (n,T,B,...)
- Fluctuations extended along
 magnetic field lines
- Perpendicular to magnetic field lines size much smaller than system size
- Fluctuation frequency much smaller than gyro-frequency

fluctuations in a plasma

Measured density fluctuations:

1 kHz
$$\lesssim f \lesssim 100$$
 kHz $\tilde{n}_e/n_e \sim 10^{-3} - 10^{-2}$

What defines the amplitude?

Fluctuations are driven by gradients, thus saturation due to local flattening of gradients

Fluctuation stops for $|\nabla \tilde{n}_e| \sim |\nabla n_{e0}|$

$$\begin{aligned} \nabla \tilde{n}_e | \sim k_{\perp} \tilde{n}_e & |\nabla n_{e0}| \sim n_{e0} / L_n \\ \\ \frac{\tilde{n}_e}{n_{e0}} \sim \frac{1}{k_{\perp} L_n} = \frac{1}{k_{\perp} \rho_s} \frac{\rho_s}{L_n} \end{aligned}$$

fluctuations in a plasma

Measured density fluctuations:

1 kHz $\leq f \leq 100$ kHz $\tilde{n}_e/n_e \sim 10^{-3} - 10^{-2}$

$$\frac{\tilde{n}_e}{n_{e0}} \sim \frac{1}{k_\perp L_n} = \frac{1}{k_\perp \rho_s} \frac{\rho_s}{L_n}$$

$$k_{\perp} \rho_s \sim 0.1 - 0.3$$
,

$$\tilde{n}_e/n_{e0} \sim (3-10) \rho_s/L_n$$

$$\rho_s \equiv c_s / \Omega_i \ (\text{mit } c_s^2 = k_B T_e / m_i)$$

ion gyro-radius with electron temperature

fluctuations in a plasma

Measured density fluctuations:

$$k_\perp \rho_s \sim 0.1 - 0.3$$

- Extremely anisotropic: in parallel direction about 10³ ... 10⁴ times larger extent than in perpendicular direction
- Temperature fluctuations are more difficult to measure, but similar

• B-field fluctuations perpendicular to B, very small parallel to B:

$${\tilde B}_{\perp}/B_0 \sim 10^{-5} - 10^{-4}$$

Fluctuation induced transport

Radial particle transport due to fluctuating electric and magnetic fields:

$$\tilde{v}_r = \tilde{v}_{Er} + v_{\parallel} \tilde{B}_r / B_0$$

Velocity distribution function for electrons: perturbed Maxwelldistribution:

$$f_{e0} = n_{e0} \left(\frac{m_e}{2\pi k_B T_{e0}}\right)^{3/2} \exp\left[-\frac{mv^2}{2 k_B T_{e0}}\right] \qquad f_e = f_{e0} + \tilde{f}_e, \quad \tilde{f}_e \ll f_{e0}$$

Particle transport:

$$\Gamma \equiv \int \tilde{v}_r \tilde{f}_e d^3 v = \tilde{v}_{Er} \int \tilde{f}_e d^3 v + (\tilde{B}_r/B_0) \int v_{||} \tilde{f}_e d^3 v$$

Moments of perturbed distribution function (linearised):

$$\int \tilde{f}_e d^3 v = \tilde{n}_e \qquad \int v_{||} \tilde{f}_e d^3 v = n_{e0} \tilde{u}_{e||}$$

Fluctuation induced transport

Moments of perturbed distribution function (linearised):

$$\int \tilde{f}_e d^3 v = \tilde{n}_e \qquad \int v_{\parallel} \tilde{f}_e d^3 v = n_{e0} \tilde{u}_{e\parallel}$$

Finite particle transport due to fluctuating fields only if there is a phase relation between density and velocity fluctuations (time and space averaging<>):

$$\langle \Gamma \rangle = \langle \tilde{n}_e \, \tilde{v}_{Er} \rangle + n_{e0} \, \langle \tilde{u}_{e\parallel} \, \tilde{B}_r \rangle / B_0$$

$$\langle \tilde{n}_e \rangle = \langle \tilde{u}_{e\parallel} \rangle = \langle \tilde{v}_{Er} \rangle = \langle \tilde{B}_r \rangle = 0$$

Heat flux (due to electrons):

$$\langle Q_e \rangle = \frac{3}{2} k_B T_{e0} \langle \Gamma \rangle + \frac{3}{2} n_{e0} k_B \langle \tilde{T}_e \, \tilde{v}_{Er} \rangle + \langle \tilde{q}_{e\parallel} \, \tilde{B}_r \rangle / B_0 + p_{e0} \, \langle \tilde{u}_{e\parallel} \, \tilde{B}_r \rangle / B_0$$

Homogeneous magnetic field in z-direction: **B**=B**e**_z

Force balance for electrons: $\nabla p_e + en_e (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = 0$

Small B-field perturbation, static equilibrium, ideal plasma:

Electrostatic fluctuations
$$\mathbf{E}=-
abla ilde{\phi}$$

Small density fluctuations $n_e = n_{e0} + \tilde{n}_e, \, \tilde{n}_e \ll n_{e0}$

Slowly varying background profiles:

$$p_e = n_e k_B T_{e0}$$
 $\nabla n_{e0} = -(n_{e0}/L_n) \hat{\mathbf{x}}_e$

Parallel component of force balance: $\nabla_{\parallel} p_e = -en_e E_{\parallel}$

No equilibrium pressure gradient along magnetic field lines:

$$\nabla_{\parallel} p_e = \nabla_{\parallel} \tilde{p}_e = T_{e,0} \nabla_{\parallel} \tilde{n}_e$$

Isothermal (no temperature gradient along field lines)

$$-en_{e,0}E_{\parallel}=en_{e,0}\nabla_{\parallel}\tilde{\phi}$$

Boltzmann-relation: Electron density perturbation leads to potential perturbation (no phase delay!)

$$T_{e,0}\nabla_{\parallel}\tilde{n}_{e}=en_{e,0}\nabla_{\parallel}\tilde{\phi}$$

$$\frac{\tilde{n}_e}{n_{e0}} = \frac{e\tilde{\phi}}{T_{e0}}$$

Force balance for electrons: $\nabla p_e + en_e (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = 0 \quad | \times \vec{B} / (en_e B^2)$

Perpendicular component of force balance:

$$\mathbf{v}_{\perp} = \frac{\mathbf{E} \times \mathbf{B}}{B^2} + \frac{\nabla p_e \times \mathbf{B}}{e n_{e0} B^2} \equiv \mathbf{v}_E + \mathbf{v}_{de}$$

Linearised continuity equation (static equilbrium: $v_0=0$):

$$\partial_t \tilde{n}_e + \nabla \cdot (n_{e0} \mathbf{v}_\perp) = 0$$

$$\nabla \cdot (n_{e0} \mathbf{v}_{de}) \propto \nabla \cdot (\nabla p_e \times \hat{\mathbf{z}}) = 0 \qquad \nabla \cdot \mathbf{v}_E \propto \nabla \cdot (\nabla \hat{\mathbf{\phi}} \times \hat{\mathbf{z}}) = 0$$

$$\partial_t \tilde{n}_e + \mathbf{v}_E \cdot \nabla n_{e0} = \partial_t \tilde{n}_e - (n_{e0}/L_n) \, \mathbf{v}_{Ex} = 0$$

$$\partial_t \tilde{n}_e + \mathbf{v}_E \cdot \nabla n_{e0} = \partial_t \tilde{n}_e - (n_{e0}/L_n) \, \mathbf{v}_{Ex} = 0$$

Ansatz for perturbation:
$$\widetilde{n}_e \sim \widetilde{\phi} \sim \exp(i\vec{k}\vec{y} - i\omega t)$$

$$-i\omega\tilde{n}_e = \frac{n_{e,0}}{L_n}v_{Ex} \qquad v_{Ex} = \frac{\vec{E}\times\vec{B}}{B^2} = \frac{-\nabla\phi_y}{B}$$

$$-i\omega\tilde{n}_e = -i\frac{n_{e,0}}{L_n}\frac{k_y\tilde{\phi}_y}{B} \qquad \qquad \frac{\tilde{n}_e}{n_{e0}} = \frac{e\tilde{\phi}}{T_{e0}}$$

$$\omega_D = \frac{k_y T_{e0}}{eBL_n}$$

Phase velocity:

$$\frac{\omega_D}{k_y} = \frac{\partial \omega_D}{\partial k_y} = |v_{de}|$$

$$\partial_t \tilde{n}_e + \mathbf{v}_E \cdot \nabla n_{e0} = \partial_t \tilde{n}_e - (n_{e0}/L_n) \, \mathbf{v}_{Ex} = 0$$

$$\omega_D = \frac{k_y T_{e0}}{eBL_n} \qquad \qquad \frac{\omega_D}{k_y} = \frac{\partial \omega_D}{\partial k_y} = |v_{de}|$$

Propagation in y direction

Drift waves in an ideal plasma are marginally stable (no damping, no instability)

With collisions (or Landau damping) (delayed parallel response):

$$\frac{\tilde{n}_{e}}{n_{e0}} = \frac{e\tilde{\phi}}{T_{e0}} \left(1 - i\delta\right)$$

-> complex frequency, drift waves are unstable

$$\omega_D \rightarrow \frac{\omega_D}{1-i\delta} \approx \omega_D (1+i\delta)$$

Drift waves grow linearly, until non-linearies play important role:

$$\partial_t \tilde{n}_e + \mathbf{v}_E \cdot \tilde{n}_e = \dots$$

Numerical treatment – large scale turbulece codes

Drift wave instability

Perturbations are

- with finite parallel wave length
- ▶ phase(n, φ) = 0
- destabilised by resistivity

Electrostatic transport

Diffusion from random walk:

- ► step size: $L_{\perp} = 2\pi/k_{\perp}$
- linear growth rate γ
- ▶ step time: $\tau = 1/\gamma$

Mixing length estimate of the diffusion coefficient:

Fully developed turbulence

Turbulence simulations for ASDEX Upgrade

- radial extension of eddies: 1 2 cm
- typical life time: 0.5 1 ms

Anomalous transport-coefficients are of order of the measured ones:
 ~1 m²/s

Drift in inhomogenous magnetic fields

Magnetic field in toroidal geometry is inhomogeneous

Example for a mode that leads to turbulence in a Tokamak

Drift in inhomogeneous magnetic field is temperature dependend

Initial temperature perturbation leads to density perturbation (90° phase shifted)

ITG mode (ion temperature gradient mode)

density perturbation causes potential perturbation Resulting ExB drift amplifies initial perturbation at low B-field side

ITG mode (ion temperature gradient mode)

Perturbations are

- constant on field linie
- with cross-phase(n, ϕ) = $\pi/2$
- destabilised by curvature

11

Understanding of the turbulent transport

Ab-initio physics models

High performance computing

Critical temperature gradient: Mode grows exponentially above this threshold

$$\frac{1}{L_{T}} = \left| \frac{\nabla T}{T} \right| > \frac{1}{L_{T,cr}}$$

ITG causes strong enhancement of radial transport

$$\frac{d \ln T}{dr} = \frac{\nabla T}{T} = -\frac{1}{L_{T,cr}}$$
$$\int \frac{dT}{T} = \int_{a}^{b} -\frac{dr}{L_{T,cr}}$$

A certain critical T gradient cannot be exceeded – independent from heating power

"stiff" temperature profiles

"stiff" temperature profiles in theory and experiment

modeling agrees with experiment

IPΡ

"Stiff" profiles and transport barriers

Turbulent transport limits (logarithmic) gradient of temperature profiles

Analogous to sand-pile: gradient limited

but height can be varied by "barriers"

Central temperature is determined by edge temperature

Turbulence is suppressed by sheared rotation

Macroscopic sheared rotation tilts eddies and tears them apart

radial transport is proportional to eddy size

Sheared rotation is self generated (Reynolds stress)

Gyrokinetic Simulations of Plasma Microinstabilities

simulation by

Zhihong Lin et al.

Science 281, 1835 (1998)

Transport barriers due to turbulence suppression

conventional Tokamak

Π

Turbulance suppression is most effective for nonmonotonous current profiles

Standard j-profile

Turbulance suppression is most effective for nonmonotonous current profiles

- Perturbations are field aligned, magnetic shear tilts the eddies and reduces the drive
- Maximum transport around s = 0.5

conventional Tokamak "Advanced Tokamak" 25 25 lon temperature (keV) Internal transport barrier **ASDEX Upgrade** electron pressure [kPa] 20 20 "H"-mode 15 15 ۳QD Π · **C**C₁ transport barrier 10 10 ₽₀ "L"-mode normal discharge 5 5 #8595 0 0.2 0.0 0.6 0.8 1.0 0.4 0.2 0.3 0.1 0.4 0.5 0.0 normalised radius minor radius [m]

Ignition temperature at ASDEX Upgrade!

Advanced Tokamaks -perspectives

- Transport barierres \rightarrow improved heat insulation
- ignition for smaller machines possible
- stationary operation due to non-inductive current drive

$$j_{BS} \sim \nabla p$$

Stationary Tokamaks – first results

State of the art:substitute simple scaling laws by prediction of density and temperature profiles

