Publications of U. von Toussaint
All genres
Book Chapter (46)
141.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Monte Carlo methods. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 537 - 571 (Eds. Linden, W. v. d.; Dose, V.; 142.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Numerical integration. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 509 - 536 (Eds. Linden, W. v. d.; Dose, V.; 143.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Bayesian experimental design. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 491 - 505 (Eds. Linden, W. v. d.; Dose, V.; 144.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Model selection. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 470 - 490 (Eds. Linden, W. v. d.; Dose, V.; 145.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Integral equations. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 451 - 469 (Eds. Linden, W. v. d.; Dose, V.; 146.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Function estimation. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 431 - 450 (Eds. Linden, W. v. d.; Dose, V.; 147.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Change point problems. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 409 - 430 (Eds. Linden, W. v. d.; Dose, V.; 148.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Unrecognized signal contributions. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 396 - 408 (Eds. Linden, W. v. d.; Dose, V.; 149.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Consistent inference on inconsistent data. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 364 - 395 (Eds. Linden, W. v. d.; Dose, V.; 150.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Regression. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 333 - 363 (Eds. Linden, W. v. d.; Dose, V.; 151.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Comparison of Bayesian and frequentist hypothesis tests. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 324 - 330 (Eds. Linden, W. v. d.; Dose, V.; 152.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Sampling distributions and common hypothesis tests. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 284 - 323 (Eds. Linden, W. v. d.; Dose, V.; 153.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
The frequentist approach. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 276 - 283 (Eds. Linden, W. v. d.; Dose, V.; 154.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
The Bayesian way. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 255 - 275 (Eds. Linden, W. v. d.; Dose, V.; 155.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
The Cramer-Rao inequality. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 248 - 254 (Eds. Linden, W. v. d.; Dose, V.; 156.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Frequentist parameter estimation. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 236 - 247 (Eds. Linden, W. v. d.; Dose, V.; 157.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Bayesian parameter estimation. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 227 - 235 (Eds. Linden, W. v. d.; Dose, V.; 158.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Global smoothness. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 215 - 223 (Eds. Linden, W. v. d.; Dose, V.; 159.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Quantified maximum entropy. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 201 - 214 (Eds. Linden, W. v. d.; Dose, V.; 160.
Book Chapter
Toussaint, U. v.). Cambridge University Press, Cambridge (2014)
Testable information and maximum entropy. In: Bayesian Probability Theory: Applications in the Physical Sciences, pp. 178 - 200 (Eds. Linden, W. v. d.; Dose, V.;